

D6.3 ColRobot prototype in aerospace industry

D6.3 ColRobot prototype in derosp industry

Project Acronym:	ColRobot	
Project full title:	Collaborative Robotics for Assembly and Kitting in Smart Manufacturing	
Project No:	688807	
Call:	H2020-ICT-2015	
Coordinator:	ENSAM	
Project start date:	February 1, 2016	
Project duration:	36 months	

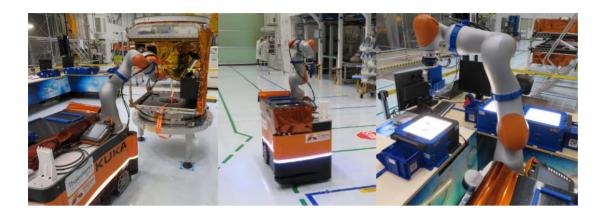
Abstract	This deliverable describes the ColRobot prototype in aerospace industry	

Document control sheet

Title of Document	D6.3 ColRobot prototype in aerospace industry		
Work Package	WP6		
Last version date	31/01/2019		
Status	Final		
Document Version:	v.2		
File Name	ColRobot D6.3 ColRobot prototype in aerospace industry		
Dissemination Level	Public		
Partner Responsible	TAS		

Versioning and contribution history

Version	Date	Revision Description	Partner
v.1	29/01/2019	First draft version	TAS
v.2	31/01/2019	Coordinator review	ENSAM


Disclaimer

This document is provided « as is » with no warranties whatsoever, including any warranty or merchantability, noninfringement, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample. No license, express or implied, by estoppels or otherwise, to any intellectual property rights are granted herein. The members of the project ColRobot do not accept any liability for actions or omissions of ColRobot members or third parties and disclaim any obligation to enforce the use of this document.

This document reflects only the authors' view and the Commission is not responsible for any use that may be made of the information it contains. This document is subject to change without notice.

D6.3 ColRobot prototype in derospit industry

COLROBOT demonstrator for WP6, has been tested according to 3 use cases identified in the specification [D1.1 COLROBOT functional specifications §2]:

- Kitting with screws and washers
- Equipment installation on satellite panel
- Assistance for transferring components

We achieved a TRL7 for the demonstrator. TRL7 definition is the following (from ISO 16290:2014): System demonstration in operational environment.

Qualitative objectives were identified in GRANT Agreement to demonstrate the collaborative robotic solution for assembly and kitting in space industry environment:

- To reduce labour costs by allowing workers to focus on complex tasks with high value added and leave repetitive tasks to robots.
- The robotic system can be instructed by non-experts in robotics.
- Reduce time the operators are exposed to ergonomically inconvenient work.
- To reduce production costs by removing feeders from working areas.
- Increase production flexibility using robot as a power tool.
- Reduce setup time.